
ROBOTBULLS

A Decentralized
Platform for Trading
Robots

Abstract
RobotBulls is a decentralized, open-source protocol for publishing and executing algorithmic

trading strategies (“robots”) directly on-chain. The system enables developers to contribute

trading algorithms, users to independently deploy them through smart contracts, and

governance participants to coordinate protocol upgrades and parameters.

All operations are executed by autonomous smart contracts on blockchain infrastructure,

with code and metadata stored in decentralized storage systems. Governance is managed

by a community-driven DAO, supported by the RobotBulls Token (RBT), which functions

solely as a governance coordination tool.

By combining blockchain execution, decentralized storage, and permissionless governance,

RobotBulls provides a resilient, transparent, and adaptable infrastructure for decentralized

algorithmic trading.

1. Introduction
The advent of blockchain technology has catalyzed the emergence of decentralized finance

(DeFi) platforms, fundamentally altering conventional financial paradigms. RobotBulls

embodies a pioneering approach to trading platforms by integrating blockchain capabilities

with open-source innovation to establish a permissionless framework where trading robots

can be developed, reviewed, and executed entirely on-chain. This section elucidates the

fundamental concepts and objectives underpinning the RobotBulls platform, providing a

comprehensive overview of its mission and vision.

ETHEREUM
BLOCKCHAIN

Smart Contracts

IPFS Storage
System

ROBOTBULLS
BLOCKCHAIN

RBC Storage
System

2. Platform
Architecture

RobotBulls integrates blockchain
execution, decentralized storage, and
governance into a unified protocol
design.

2.1 Smart Contracts
Smart contracts govern robot registration, execution, staking, and governance. Written in

Solidity, they are deployed on Ethereum and the RobotBulls blockchain. These contracts

ensure deterministic, transparent execution and cannot be altered once deployed.

2.2 Decentralized Storage
Robot code and associated metadata are stored using the InterPlanetary File System (IPFS).

Each robot is identified by a unique content hash, ensuring verifiability, immutability, and

censorship resistance.

PROPOSAL
SUBMISSION

Community Review

Backtesting &
Evaluation

Blind Verification

Voting by RBT
Holders

APPROVAL OR
DENIAL

2.3 Interoperability
The protocol is fully compatible with the Ethereum Virtual Machine

(EVM), enabling deployment on Ethereum mainnet and Layer 2

scaling solutions such as Optimistic Rollups and zk-Rollups.

Cross-chain expansion is supported through adapters, allowing

RobotBulls to operate across heterogeneous blockchain

environments. This design maximizes reach and flexibility while

preserving security and transparency.

3. Functionality
3.1 Proposal Submission
Developers publish a robot by submitting metadata and code

references to the registry contract. This process is permissionless,

ensuring global accessibility.

3.2 Community Review
Community participants evaluate submissions on dimensions such

as transparency, robustness, and adherence to secure coding

practices.

3.3 Backtesting and Verification
Robots may undergo backtesting using historical datasets to

simulate performance across market conditions, following best

practices in financial research. Blind verification enables evaluation

without disclosing proprietary logic, ensuring impartial assessment.

3.4 Deployment
Robots that pass review are made available for deployment. Users configure individual

parameters and authorize smart contracts to execute directly from their wallets. All activity

is conducted in a non-custodial manner, with each user retaining direct control over their

assets.

4. Utilizing Trading Robots
The interaction flow for users is as follows:

Selection: Review available robots, including metadata and open performance

indicators.

Configuration: Define parameters such as execution duration and allocation.

Execution: Authorize a smart contract to run trades from the user’s wallet.

Redemption: Withdraw or reconfigure assets at any point.

This flow ensures independent execution while maintaining user custody of funds.

5. Governance
5.1 DAO Framework
RobotBulls governance is managed by a Decentralized Autonomous Organization (DAO). Its

responsibilities include protocol upgrades, parameter tuning, and security-related

adjustments. Governance focuses exclusively on technical and systemic parameters, not

individual robot approval.

5.2 Voting System
The RobotBulls Token (RBT) is used for governance. Voting rights are proportional to token

holdings, with quadratic mechanisms considered for future iterations to encourage balanced

participation.

6. Tokenomics
6.1 RBT – Governance Token

The sole token of the protocol, RBT, is designed for governance only.

It enables submission and voting on proposals.

It holds no financial or ownership rights.

Its purpose is limited to decentralized coordination.

7. Security and Decentralization
7.1 Smart Contract Security
RobotBulls contracts are open-source and undergo community and external audits. Once

stable, governance processes ensure immutability of deployed contracts.

7.2 User Custody
Users maintain direct control of their private keys and funds at all times. No pooled custody

exists at the protocol level.

7.3 Forkability
RobotBulls is released under the MIT license, ensuring that anyone may fork or adapt the

protocol. This guarantees resilience, innovation, and independence of the community.

8. Conclusion
RobotBulls introduces a decentralized framework for algorithmic trading. Through smart

contracts, decentralized storage, and community governance, it provides an open,

transparent, and censorship-resistant infrastructure for deploying trading robots.

Its permissionless architecture empowers developers, users, and communities to collaborate

in advancing decentralized trading technology, while its open-source nature ensures

adaptability and resilience across blockchain ecosystems.

References
1. Benet, J. (2014). IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3).

https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

2. Baer, K., Campollo, A., & Hardie, A. (2018). Backtesting and Its Pitfalls. Journal of Portfolio

Management, 44(6), 81-91. https://doi.org/10.3905/jpm.2018.44.6.081

3. Buterin, V. (2013). A Next-Generation Smart Contract and Decentralized Application

Platform. https://ethereum.org/en/whitepaper/

